【深度学习】CVPR 2024医学影像AI相关论文!

机器学习初学者

共 19007字,需浏览 39分钟

 ·

2024-06-18 11:00

转自:第一作者EDesk
2 0 24 

 CVPR (CCF-A).
● 来源:https://github.com/MedAIerHHL/CVPR-MIA (持续更新,已授权)

CVPR-MIA




Image Reconstruction (图像重建) 

  • QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT Reconstruction.
    • 中文:QN-Mixer:用于稀疏视图CT重建的拟牛顿MLP-Mixer模型
    • Paper: https://arxiv.org/abs/2402.17951v1
    • Project: https://towzeur.github.io/QN-Mixer/
  • Fully Convolutional Slice-to-Volume Reconstruction for Single-Stack MRI.
    • 中文:单栈MRI的全卷积切片到体积重建
    • Paper: https://arxiv.org/abs/2312.03102
    • Code: http://github.com/seannz/svr
  • Structure-Aware Sparse-View X-ray 3D Reconstruction.
    • 中文:结构感知稀疏视图 X 射线 3D 重建
    • Paper: https://arxiv.org/abs/2311.10959
    • Code: https://github.com/caiyuanhao1998/SAX-NeRF
  • Progressive Divide-and-Conquer via Subsampling Decomposition for Accelerated MRI.
    • 中文:通过子采样分解的渐进分治以加速MRI
    • Paper: https://arxiv.org/abs/2403.10064
    • Code: https://github.com/ChongWang1024/PDAC

 


Image Resolution (图像超分) 

  • Learning Large-Factor EM Image Super-Resolution with Generative Priors
    • 中文:使用生成先验学习大因子电磁图像超分辨率
    • Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Shou_Learning_Large-Factor_EM_Image_Super-Resolution_with_Generative_Priors_CVPR_2024_paper.pdf
    • Code: https://github.com/jtshou/GPEMSR
    • Video: https://youtu.be/LNSLQM5-YcM
  • CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data
    • 中文:CycleINR:任意尺度医学数据体素超分辨率的循环隐式神经表示    
    • Paper: https://arxiv.org/abs/2404.04878v1   



Image Registration (图像配准)    


  • Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration 
    • 中文:适用于可变形多模态医学图像配准的模态无关结构图像表示学习

    • Paper: https://arxiv.org/abs/2402.18933

  • [Oral & Best Paper Candidate!!!] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
    • 中文:基于相关性的粗到细MLP用于可变形医学图像配准
    • Paper: https://arxiv.org/abs/2406.00123
    • Code: https://github.com/jungeun122333/UVI-Net

 


Image Segmentation (图像分割)

  • PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation
    • 中文:PrPSeg:全景肾病病理分割的通用命题学习
    • Paper: https://arxiv.org/abs/2402.19286
  • Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation
    • 中文:通过模型自我消歧学习的多功能医学图像分割,来自多源数据集
    • Paper: https://arxiv.org/abs/2311.10696
  • Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation
    • 中文:每个测试图像应得到特定提示:2D医学图像分割的持续测试时适应
    • Paper: https://arxiv.org/abs/2311.18363
    • Code: https://github.com/Chen-Ziyang/VPTTA
  • One-Prompt to Segment All Medical Images
    • 中文:一提示分割所有医学图像
    • Paper: https://arxiv.org/abs/2305.10300
    • Code: https://github.com/WuJunde/PromptUNet/tree/main
  • Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention
    • 中文:基于多尺度注意力的多频率模态无关医学图像分割
    • Paper: https://arxiv.org/abs/2405.06284
    • Code Project: https://skawngus1111.github.io/MADGNet_project/
  • Diversified and Personalized Multi-rater Medical Image Segmentation
    • 中文:多样化和个性化的多评分员医学图像分割
    • Paper: https://arxiv.org/pdf/2212.00601
    • Code: https://github.com/ycwu1997/D-Persona
  • MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling
    • 中文:基于3D遮罩自动编码和伪标签的MAPSeg:异构医学图像分割的统一无监督域适应
    • Paper: https://arxiv.org/abs/2303.09373    
  • Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation
    • 中文:半监督医学图像分割的自适应双向位移
    • Paper: https://arxiv.org/abs/2405.00378
    • Code: https://github.com/chy-upc/ABD
  • Cross-dimension Affinity Distillation for 3D EM Neuron Segmentation
    • 中文:3D EM神经元分割的跨维度亲和力蒸馏
    • Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Cross-Dimension_Affinity_Distillation_for_3D_EM_Neuron_Segmentation_CVPR_2024_paper.pdf
    • Code: https://github.com/liuxy1103/CAD
  • ToNNO: Tomographic Reconstruction of a Neural Network’s Output for Weakly Supervised Segmentation of 3D Medical Images.
    • 中文:ToNNO:神经网络输出的断层重建用于弱监督3D医学图像分割
    • Paper: https://arxiv.org/abs/2405.06880
  • Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation
    • 中文:通过模型自我消歧学习的多功能医学图像分割,来自多源数据集
    • Paper: https://arxiv.org/abs/2311.10696
  • Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge
    • 中文:基于人类先验知识的正畸治疗高效实例分割框架
    • Paper: https://arxiv.org/abs/2404.01013
  • Tyche: Stochastic in Context Learning for Universal Medical Image Segmentation
    • 中文:Tyche:上下文中的随机学习用于通用医学图像分割
    • Paper: https://arxiv.org/abs/2401.13650
    • Code: https://github.com/mariannerakic/tyche/
  • Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical Image Segmentation
    • 中文:混合域半监督医学图像分割中中间域的构建与探索
    • Paper: https://arxiv.org/abs/2404.08951
    • Code: https://github.com/MQinghe/MiDSS
  • S2VNet: Universal Multi-Class Medical Image Segmentation via Clustering-based Slice-to-Volume Propagation
    • 中文:S2VNet:通过聚类基础的切片到体积传播实现通用多类别医学图像分割
    • Paper: https://arxiv.org/abs/2403.16646
    • Code: https://github.com/dyh127/S2VNet
  • EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation.
    • 中文:EMCAD:医学图像分割的高效多尺度卷积注意力解码
    • Paper: https://arxiv.org/abs/2405.06880
    • Code: https://github.com/SLDGroup/EMCAD
  • Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation.
    • 中文:像住院医生一样训练:情境先验学习导向的通用医学图像分割    
    • Paper: https://arxiv.org/abs/2306.02416
    • Code: https://github.com/yhygao/universal-medical-image-segmentation
  • ZePT: Zero-Shot Pan-Tumor Segmentation via Query-Disentangling and Self-Prompting
    • Paper: https://arxiv.org/abs/2312.04964
  • [Oral!!!] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
    • Paper: https://github.com/dengxl0520/MemSAM/blob/main/paper.pdf
    • Code: https://github.com/dengxl0520/MemSAM/tree/main
  • PH-Net: Semi-Supervised Breast Lesion Segmentation via Patch-wise Hardness
    • Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Jiang_PH-Net_Semi-Supervised_Breast_Lesion_Segmentation_via_Patch-wise_Hardness_CVPR_2024_paper.pdf
    • Code: https://github.com/jjjsyyy/PH-Net
    • Video: https://cvpr.thecvf.com/virtual/2024/poster/30539

 


Image Generation (图像生成)  

  • Learned representation-guided diffusion models for large-image generation
    • 中文:用于大型图像生成的学习表示指导的扩散模型
    • Paper: https://arxiv.org/abs/2312.07330
  • MedM2G: Unifying Medical Multi-Modal Generation via Cross-Guided Diffusion with Visual Invariant
    • 中文:MedM2G:通过视觉不变的交叉引导扩散统一医疗多模式生成
    • Paper: https://arxiv.org/html/2403.04290v1
  • Towards Generalizable Tumor Synthesis
    • 中文:迈向泛化肿瘤合成
    • Paper: https://arxiv.org/abs/2402.19470v1
    • Code: https://github.com/MrGiovanni/DiffTumor
  • Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images
    • 中文:无需任何中间帧的4D医学图像的数据高效无监督插值
    • Paper: https://arxiv.org/abs/2404.01464
    • Code: https://github.com/jungeun122333/UVI-Net

 


Image Classification (图像分类)  

  • Systematic comparison of semi-supervised and self-supervised learning for medical image classification
    • 中文:医学图像分类中半监督和自监督学习的系统比较
    • Paper: https://arxiv.org/abs/2307.08919v2
    • Code: https://github.com/tufts-ml/SSL-vs-SSL-benchmark
  • Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images
    • 中文:适应视觉语言模型以在医学图像中实现泛化的异常检测
    • Paper: https://arxiv.org/abs/2403.12570
    • Code: https://github.com/MediaBrain-SJTU/MVFA-AD  
  • FocusMAE: Gallbladder Cancer Detection from Ultrasound Videos with Focused Masked Autoencoders
    • 中文:FocusMAE:聚焦掩蔽自编码器从超声视频中检测胆囊癌
    • Paper: https://arxiv.org/abs/2403.08848
    • Code: https://github.com/sbasu276/FocusMAE

 


Federated Learning(联邦学习) 

  • Think Twice Before Selection: Federated Evidential Active Learning for Medical Image Analysis with Domain Shifts
    • 中文:选择前请三思:带有领域转移的医学图像分析的联邦证据主动学习
    • Paper: https://arxiv.org/abs/2312.02567   

        


Medical Pre-training $ Foundation Model(预训练&基础模型)

  • VoCo: A Simple-yet-Effective Volume Contrastive Learning Framework for 3D Medical Image Analysis
    • 中文:VoCo:一个简单而有效的三维医学图像分析的体对比学习框架
    • Paper: https://arxiv.org/abs/2402.17300
    • Code: https://github.com/Luffy03/VoCo
  • MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning
    • 中文:MLIP:使用发散编码器和知识引导的对比学习增强医学视觉表示
    • Paper: https://arxiv.org/abs/2402.02045
  • [Highlight!] Continual Self-supervised Learning: Towards Universal Multi-modal Medical Data Representation Learning
    • 中文:持续自我监督学习:走向通用的多模态医学数据表示学习
    • Paper:https://arxiv.org/abs/2311.17597
    • Code: https://github.com/yeerwen/MedCoSS
  • Bootstrapping Chest CT Image Understanding by Distilling Knowledge from X-ray Expert Models
    • 中文:从X射线专家模型中提炼知识以启动胸部CT图像理解
    • Paper: https://arxiv.org/abs/2404.04936v1
  • Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding
    • Paper: https://arxiv.org/abs/2403.18271
    • Code: https://github.com/Cccccczh404/H-SAM
  • Low-Rank Knowledge Decomposition for Medical Foundation Models
    • 中文:通过层次解码释放SAM在医学适应中的潜力
    • Paper: https://arxiv.org/abs/2404.17184
    • Code: https://github.com/MediaBrain-SJTU/LoRKD

 


Vision-Language Model (视觉-语言) 

  • PairAug: What Can Augmented Image-Text Pairs Do for Radiology?
    • 中文:PairAug:增强的图像文本对对放射学能做什么?
    • Paper: https://arxiv.org/abs/2404.04960
    • Code: https://github.com/YtongXie/PairAug   
  • Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Matching Framework
    • 中文:疾病描述分解以增强病理检测:一个多方面视觉语言匹配框架
    • Paper: https://arxiv.org/abs/2403.07636
    • Code: https://github.com/HieuPhan33/MAVL
  • Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images
    • 中文:适应视觉语言模型以在医学图像中实现泛化的异常检测
    • Paper: https://arxiv.org/abs/2403.12570
    • Code: https://github.com/MediaBrain-SJTU/MVFA-AD
  • OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM
    • 中文:OmniMedVQA:一个新的大规模全面评估基准,针对医学LVLM
    • Paper: https://arxiv.org/abs/2402.09181
  • CARZero: Cross-Attention Alignment for Radiology Zero-Shot Classification
    • 中文:CARZero:放射学零样本分类的交叉注意力对齐
    • Paper: https://arxiv.org/abs/2402.17417
  • FairCLIP: Harnessing Fairness in Vision-Language Learning.
    • 中文:FairCLIP:在视觉语言学习中利用公平性
    • Paper: https://arxiv.org/abs/2403.19949
    • Code: https://github.com/Harvard-Ophthalmology-AI-Lab/FairCLIP

 


Computational Pathology (计算病理)  

  • Generalizable Whole Slide Image Classification with Fine-Grained Visual-Semantic Interaction
    • 中文:具有精细视觉语义交互的可泛化全片图像分类
    • Paper: https://arxiv.org/abs/2402.19326
  • Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology
    • 中文:特征再嵌入:朝着计算病理学的基础模型级性能迈进
    • Paper: https://arxiv.org/abs/2402.17228
    • Code: https://github.com/DearCaat/RRT-MIL
  • PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation
    • 中文:PrPSeg:全景肾病病理分割的通用命题学习
    • Paper: https://arxiv.org/abs/2402.19286
  • ChAda-ViT: Channel Adaptive Attention for Joint Representation Learning of Heterogeneous Microscopy Images
    • 中文:ChAda-ViT:通道自适应注意力用于异质显微图像的联合表示学习
    • Paper: https://arxiv.org/abs/2311.15264
    • Code: https://github.com/nicoboou/chada_vit
  • SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology    
    • 中文:SI-MIL:驯服深度MIL以实现千兆像素组织病理学的自我解释性
    • Paper: https://arxiv.org/abs/2312.15010
  • Transcriptomics-guided Slide Representation Learning in Computational Pathology.
    • 中文:计算病理学中转录组学指导的切片表示学习
    • Paper: https://arxiv.org/abs/2405.11618
    • Code: https://github.com/mahmoodlab/TANGLE

 


Others

  • Seeing Unseen: Discover Novel Biomedical Concepts via Geometry-Constrained Probabilistic Modeling
    • 中文:看见未见:通过几何约束的概率建模发现新型生物医学概念
    • Paper: https://arxiv.org/html/2403.01053v2   



      
   
      
          
             
往期精彩回顾




  • 交流群

欢迎加入机器学习爱好者微信群一起和同行交流,目前有机器学习交流群、博士群、博士申报交流、CV、NLP等微信群,请扫描下面的微信号加群,备注:”昵称-学校/公司-研究方向“,例如:”张小明-浙大-CV“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~(也可以加入机器学习交流qq群772479961



浏览 24
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报