【深度学习】CVPR 2024医学影像AI相关论文!
机器学习初学者
共 19007字,需浏览 39分钟
·
2024-06-18 11:00
CVPR-MIA
Image Reconstruction (图像重建)
-
QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT Reconstruction.
-
中文:QN-Mixer:用于稀疏视图CT重建的拟牛顿MLP-Mixer模型 -
Paper: https://arxiv.org/abs/2402.17951v1 -
Project: https://towzeur.github.io/QN-Mixer/
-
Fully Convolutional Slice-to-Volume Reconstruction for Single-Stack MRI.
-
中文:单栈MRI的全卷积切片到体积重建 -
Paper: https://arxiv.org/abs/2312.03102 -
Code: http://github.com/seannz/svr
-
Structure-Aware Sparse-View X-ray 3D Reconstruction.
-
中文:结构感知稀疏视图 X 射线 3D 重建 -
Paper: https://arxiv.org/abs/2311.10959 -
Code: https://github.com/caiyuanhao1998/SAX-NeRF
-
Progressive Divide-and-Conquer via Subsampling Decomposition for Accelerated MRI.
-
中文:通过子采样分解的渐进分治以加速MRI -
Paper: https://arxiv.org/abs/2403.10064 -
Code: https://github.com/ChongWang1024/PDAC
Image Resolution (图像超分)
-
Learning Large-Factor EM Image Super-Resolution with Generative Priors
-
中文:使用生成先验学习大因子电磁图像超分辨率 -
Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Shou_Learning_Large-Factor_EM_Image_Super-Resolution_with_Generative_Priors_CVPR_2024_paper.pdf -
Code: https://github.com/jtshou/GPEMSR -
Video: https://youtu.be/LNSLQM5-YcM
-
CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data
-
中文:CycleINR:任意尺度医学数据体素超分辨率的循环隐式神经表示 -
Paper: https://arxiv.org/abs/2404.04878v1
Image Registration (图像配准)
-
Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration
中文:适用于可变形多模态医学图像配准的模态无关结构图像表示学习
Paper: https://arxiv.org/abs/2402.18933
-
[Oral & Best Paper Candidate!!!] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
-
中文:基于相关性的粗到细MLP用于可变形医学图像配准 -
Paper: https://arxiv.org/abs/2406.00123 -
Code: https://github.com/jungeun122333/UVI-Net
Image Segmentation (图像分割)
-
PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation
-
中文:PrPSeg:全景肾病病理分割的通用命题学习 -
Paper: https://arxiv.org/abs/2402.19286
-
Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation
-
中文:通过模型自我消歧学习的多功能医学图像分割,来自多源数据集 -
Paper: https://arxiv.org/abs/2311.10696
-
Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation
-
中文:每个测试图像应得到特定提示:2D医学图像分割的持续测试时适应 -
Paper: https://arxiv.org/abs/2311.18363 -
Code: https://github.com/Chen-Ziyang/VPTTA
-
One-Prompt to Segment All Medical Images
-
中文:一提示分割所有医学图像 -
Paper: https://arxiv.org/abs/2305.10300 -
Code: https://github.com/WuJunde/PromptUNet/tree/main
-
Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention
-
中文:基于多尺度注意力的多频率模态无关医学图像分割 -
Paper: https://arxiv.org/abs/2405.06284 -
Code Project: https://skawngus1111.github.io/MADGNet_project/
-
Diversified and Personalized Multi-rater Medical Image Segmentation
-
中文:多样化和个性化的多评分员医学图像分割 -
Paper: https://arxiv.org/pdf/2212.00601 -
Code: https://github.com/ycwu1997/D-Persona
-
MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling
-
中文:基于3D遮罩自动编码和伪标签的MAPSeg:异构医学图像分割的统一无监督域适应 -
Paper: https://arxiv.org/abs/2303.09373
-
Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation
-
中文:半监督医学图像分割的自适应双向位移 -
Paper: https://arxiv.org/abs/2405.00378 -
Code: https://github.com/chy-upc/ABD
-
Cross-dimension Affinity Distillation for 3D EM Neuron Segmentation
-
中文:3D EM神经元分割的跨维度亲和力蒸馏 -
Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Cross-Dimension_Affinity_Distillation_for_3D_EM_Neuron_Segmentation_CVPR_2024_paper.pdf -
Code: https://github.com/liuxy1103/CAD
-
ToNNO: Tomographic Reconstruction of a Neural Network’s Output for Weakly Supervised Segmentation of 3D Medical Images.
-
中文:ToNNO:神经网络输出的断层重建用于弱监督3D医学图像分割 -
Paper: https://arxiv.org/abs/2405.06880
-
Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation
-
中文:通过模型自我消歧学习的多功能医学图像分割,来自多源数据集 -
Paper: https://arxiv.org/abs/2311.10696
-
Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge
-
中文:基于人类先验知识的正畸治疗高效实例分割框架 -
Paper: https://arxiv.org/abs/2404.01013
-
Tyche: Stochastic in Context Learning for Universal Medical Image Segmentation
-
中文:Tyche:上下文中的随机学习用于通用医学图像分割 -
Paper: https://arxiv.org/abs/2401.13650 -
Code: https://github.com/mariannerakic/tyche/
-
Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical Image Segmentation
-
中文:混合域半监督医学图像分割中中间域的构建与探索 -
Paper: https://arxiv.org/abs/2404.08951 -
Code: https://github.com/MQinghe/MiDSS
-
S2VNet: Universal Multi-Class Medical Image Segmentation via Clustering-based Slice-to-Volume Propagation -
中文:S2VNet:通过聚类基础的切片到体积传播实现通用多类别医学图像分割 -
Paper: https://arxiv.org/abs/2403.16646 -
Code: https://github.com/dyh127/S2VNet -
EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation.
-
中文:EMCAD:医学图像分割的高效多尺度卷积注意力解码 -
Paper: https://arxiv.org/abs/2405.06880 -
Code: https://github.com/SLDGroup/EMCAD
-
Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation.
-
中文:像住院医生一样训练:情境先验学习导向的通用医学图像分割 -
Paper: https://arxiv.org/abs/2306.02416 -
Code: https://github.com/yhygao/universal-medical-image-segmentation
-
ZePT: Zero-Shot Pan-Tumor Segmentation via Query-Disentangling and Self-Prompting
-
Paper: https://arxiv.org/abs/2312.04964
-
[Oral!!!] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
-
Paper: https://github.com/dengxl0520/MemSAM/blob/main/paper.pdf -
Code: https://github.com/dengxl0520/MemSAM/tree/main
-
PH-Net: Semi-Supervised Breast Lesion Segmentation via Patch-wise Hardness
-
Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Jiang_PH-Net_Semi-Supervised_Breast_Lesion_Segmentation_via_Patch-wise_Hardness_CVPR_2024_paper.pdf -
Code: https://github.com/jjjsyyy/PH-Net -
Video: https://cvpr.thecvf.com/virtual/2024/poster/30539
Image Generation (图像生成)
-
Learned representation-guided diffusion models for large-image generation
-
中文:用于大型图像生成的学习表示指导的扩散模型 -
Paper: https://arxiv.org/abs/2312.07330
-
MedM2G: Unifying Medical Multi-Modal Generation via Cross-Guided Diffusion with Visual Invariant
-
中文:MedM2G:通过视觉不变的交叉引导扩散统一医疗多模式生成 -
Paper: https://arxiv.org/html/2403.04290v1
-
Towards Generalizable Tumor Synthesis
-
中文:迈向泛化肿瘤合成 -
Paper: https://arxiv.org/abs/2402.19470v1 -
Code: https://github.com/MrGiovanni/DiffTumor
-
Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images
-
中文:无需任何中间帧的4D医学图像的数据高效无监督插值 -
Paper: https://arxiv.org/abs/2404.01464 -
Code: https://github.com/jungeun122333/UVI-Net
Image Classification (图像分类)
-
Systematic comparison of semi-supervised and self-supervised learning for medical image classification
-
中文:医学图像分类中半监督和自监督学习的系统比较 -
Paper: https://arxiv.org/abs/2307.08919v2 -
Code: https://github.com/tufts-ml/SSL-vs-SSL-benchmark
-
Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images -
中文:适应视觉语言模型以在医学图像中实现泛化的异常检测 -
Paper: https://arxiv.org/abs/2403.12570 -
Code: https://github.com/MediaBrain-SJTU/MVFA-AD -
FocusMAE: Gallbladder Cancer Detection from Ultrasound Videos with Focused Masked Autoencoders
-
中文:FocusMAE:聚焦掩蔽自编码器从超声视频中检测胆囊癌 -
Paper: https://arxiv.org/abs/2403.08848 -
Code: https://github.com/sbasu276/FocusMAE
Federated Learning(联邦学习)
-
Think Twice Before Selection: Federated Evidential Active Learning for Medical Image Analysis with Domain Shifts
-
中文:选择前请三思:带有领域转移的医学图像分析的联邦证据主动学习 -
Paper: https://arxiv.org/abs/2312.02567
Medical Pre-training $ Foundation Model(预训练&基础模型)
-
VoCo: A Simple-yet-Effective Volume Contrastive Learning Framework for 3D Medical Image Analysis
-
中文:VoCo:一个简单而有效的三维医学图像分析的体对比学习框架 -
Paper: https://arxiv.org/abs/2402.17300 -
Code: https://github.com/Luffy03/VoCo
-
MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning
-
中文:MLIP:使用发散编码器和知识引导的对比学习增强医学视觉表示 -
Paper: https://arxiv.org/abs/2402.02045
-
[Highlight!] Continual Self-supervised Learning: Towards Universal Multi-modal Medical Data Representation Learning
-
中文:持续自我监督学习:走向通用的多模态医学数据表示学习 -
Paper:https://arxiv.org/abs/2311.17597 -
Code: https://github.com/yeerwen/MedCoSS
-
Bootstrapping Chest CT Image Understanding by Distilling Knowledge from X-ray Expert Models
-
中文:从X射线专家模型中提炼知识以启动胸部CT图像理解 -
Paper: https://arxiv.org/abs/2404.04936v1
-
Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding
-
Paper: https://arxiv.org/abs/2403.18271 -
Code: https://github.com/Cccccczh404/H-SAM
-
Low-Rank Knowledge Decomposition for Medical Foundation Models
-
中文:通过层次解码释放SAM在医学适应中的潜力 -
Paper: https://arxiv.org/abs/2404.17184 -
Code: https://github.com/MediaBrain-SJTU/LoRKD
Vision-Language Model (视觉-语言)
-
PairAug: What Can Augmented Image-Text Pairs Do for Radiology?
-
中文:PairAug:增强的图像文本对对放射学能做什么? -
Paper: https://arxiv.org/abs/2404.04960 -
Code: https://github.com/YtongXie/PairAug
-
Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Matching Framework
-
中文:疾病描述分解以增强病理检测:一个多方面视觉语言匹配框架 -
Paper: https://arxiv.org/abs/2403.07636 -
Code: https://github.com/HieuPhan33/MAVL
-
Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images
-
中文:适应视觉语言模型以在医学图像中实现泛化的异常检测 -
Paper: https://arxiv.org/abs/2403.12570 -
Code: https://github.com/MediaBrain-SJTU/MVFA-AD
-
OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM
-
中文:OmniMedVQA:一个新的大规模全面评估基准,针对医学LVLM -
Paper: https://arxiv.org/abs/2402.09181
-
CARZero: Cross-Attention Alignment for Radiology Zero-Shot Classification
-
中文:CARZero:放射学零样本分类的交叉注意力对齐 -
Paper: https://arxiv.org/abs/2402.17417
-
FairCLIP: Harnessing Fairness in Vision-Language Learning.
-
中文:FairCLIP:在视觉语言学习中利用公平性 -
Paper: https://arxiv.org/abs/2403.19949 -
Code: https://github.com/Harvard-Ophthalmology-AI-Lab/FairCLIP
Computational Pathology (计算病理)
-
Generalizable Whole Slide Image Classification with Fine-Grained Visual-Semantic Interaction
-
中文:具有精细视觉语义交互的可泛化全片图像分类 -
Paper: https://arxiv.org/abs/2402.19326
-
Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology
-
中文:特征再嵌入:朝着计算病理学的基础模型级性能迈进 -
Paper: https://arxiv.org/abs/2402.17228 -
Code: https://github.com/DearCaat/RRT-MIL
-
PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation
-
中文:PrPSeg:全景肾病病理分割的通用命题学习 -
Paper: https://arxiv.org/abs/2402.19286
-
ChAda-ViT: Channel Adaptive Attention for Joint Representation Learning of Heterogeneous Microscopy Images
-
中文:ChAda-ViT:通道自适应注意力用于异质显微图像的联合表示学习 -
Paper: https://arxiv.org/abs/2311.15264 -
Code: https://github.com/nicoboou/chada_vit
-
SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology
-
中文:SI-MIL:驯服深度MIL以实现千兆像素组织病理学的自我解释性 -
Paper: https://arxiv.org/abs/2312.15010
-
Transcriptomics-guided Slide Representation Learning in Computational Pathology.
-
中文:计算病理学中转录组学指导的切片表示学习 -
Paper: https://arxiv.org/abs/2405.11618 -
Code: https://github.com/mahmoodlab/TANGLE
Others
-
Seeing Unseen: Discover Novel Biomedical Concepts via Geometry-Constrained Probabilistic Modeling
-
中文:看见未见:通过几何约束的概率建模发现新型生物医学概念 -
Paper: https://arxiv.org/html/2403.01053v2
往期精彩回顾
交流群
欢迎加入机器学习爱好者微信群一起和同行交流,目前有机器学习交流群、博士群、博士申报交流、CV、NLP等微信群,请扫描下面的微信号加群,备注:”昵称-学校/公司-研究方向“,例如:”张小明-浙大-CV“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~(也可以加入机器学习交流qq群772479961)
评论