利用Python对销售额进行预测
俊红的数据分析之路
共 7944字,需浏览 16分钟
·
2022-03-02 16:15
来源:DeepHub IMBA
大家经常会遇到一些需要预测的场景,比如预测品牌销售额,预测产品销量。
什么是时间序列分析? 什么是 LSTM?
单变量时间序列 多元时间序列
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dense, Dropout
from sklearn.preprocessing import MinMaxScaler
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import GridSearchCV
df=pd.read_csv("train.csv",parse_dates=["Date"],index_col=[0])
df.head()
df.tail()
df.shape
(5203,5)
test_split=round(len(df)*0.20)
df_for_training=df[:-1041]
df_for_testing=df[-1041:]
print(df_for_training.shape)
print(df_for_testing.shape)
(4162, 5)
(1041, 5)
scaler = MinMaxScaler(feature_range=(0,1))
df_for_training_scaled = scaler.fit_transform(df_for_training)
df_for_testing_scaled=scaler.transform(df_for_testing)
df_for_training_scaled
def createXY(dataset,n_past):
dataX = []
dataY = []
for i in range(n_past, len(dataset)):
dataX.append(dataset[i - n_past:i, 0:dataset.shape[1]])
dataY.append(dataset[i,0])
return np.array(dataX),np.array(dataY)
trainX,trainY=createXY(df_for_training_scaled,30)
testX,testY=createXY(df_for_testing_scaled,30)
data_X.addend (df_for_training_scaled[i - n_past:i, 0:df_for_training.shape[1]])
print("trainX Shape-- ",trainX.shape)
print("trainY Shape-- ",trainY.shape)
(4132, 30, 5)
(4132,)
print("testX Shape-- ",testX.shape)
print("testY Shape-- ",testY.shape)
(1011, 30, 5)
(1011,)
print("trainX[0]-- \n",trainX[0])
print("trainY[0]-- ",trainY[0])
trainX — — →trainY
[0 : 30,0:5] → [30,0]
[1:31, 0:5] → [31,0]
[2:32,0:5] →[32,0]
def build_model(optimizer):
grid_model = Sequential()
grid_model.add(LSTM(50,return_sequences=True,input_shape=(30,5)))
grid_model.add(LSTM(50))
grid_model.add(Dropout(0.2))
grid_model.add(Dense(1))
grid_model.compile(loss = 'mse',optimizer = optimizer)
return grid_modelgrid_model = KerasRegressor(build_fn=build_model,verbose=1,validation_data=(testX,testY))
parameters = {'batch_size' : [16,20],
'epochs' : [8,10],
'optimizer' : ['adam','Adadelta'] }
grid_search = GridSearchCV(estimator = grid_model,
param_grid = parameters,
cv = 2)
(trainX.shape[1],trainX.shape[2]) → (30,5)
grid_search = grid_search.fit(trainX,trainY)
grid_search.best_params_
{‘batch_size’: 20, ‘epochs’: 10, ‘optimizer’: ‘adam’}
my_model=grid_search.best_estimator_.model
prediction=my_model.predict(testX)
print("prediction\n", prediction)
print("\nPrediction Shape-",prediction.shape)
scaler.inverse_transform(prediction)
prediction_copies_array = np.repeat(prediction,5, axis=-1)
prediction_copies_array.shape
(1011,5)
pred=scaler.inverse_transform(np.reshape(prediction_copies_array,(len(prediction),5)))[:,0]
original_copies_array = np.repeat(testY,5, axis=-1)
original=scaler.inverse_transform(np.reshape(original_copies_array,(len(testY),5)))[:,0]
print("Pred Values-- " ,pred)
print("\nOriginal Values-- " ,original)
plt.plot(original, color = 'red', label = 'Real Stock Price')
plt.plot(pred, color = 'blue', label = 'Predicted Stock Price')
plt.title('Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('Google Stock Price')
plt.legend()
plt.show()
df_30_days_past=df.iloc[-30:,:]
df_30_days_past.tail()
df_30_days_future=pd.read_csv("test.csv",parse_dates=["Date"],index_col=[0])
df_30_days_future
df_30_days_future["Open"]=0
df_30_days_future=df_30_days_future[["Open","High","Low","Close","Adj Close"]]
old_scaled_array=scaler.transform(df_30_days_past)
new_scaled_array=scaler.transform(df_30_days_future)
new_scaled_df=pd.DataFrame(new_scaled_array)
new_scaled_df.iloc[:,0]=np.nan
full_df=pd.concat([pd.DataFrame(old_scaled_array),new_scaled_df]).reset_index().drop(["index"],axis=1)
full_df_scaled_array=full_df.values
all_data=[]
time_step=30
for i in range(time_step,len(full_df_scaled_array)):
data_x=[]
data_x.append(
i , 0:full_df_scaled_array.shape[1]]) :
data_x=np.array(data_x)
prediction=my_model.predict(data_x)
all_data.append(prediction)
prediction =
new_array=np.array(all_data)
new_array=new_array.reshape(-1,1)
prediction_copies_array = np.repeat(new_array,5, axis=-1)
y_pred_future_30_days = scaler.inverse_transform(np.reshape(prediction_copies_array,(len(new_array),5)))[:,0]
print(y_pred_future_30_days)
对比Excel系列图书累积销量达15w册,让你轻松掌握数据分析技能,可以在全网搜索书名进行了解:
评论