LeetCode刷题实战72:编辑距离
算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !
今天和大家聊的问题叫做 编辑距离,我们先来看题面:
https://leetcode-cn.com/problems/edit-distance
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
Insert a character
Delete a character
Replace a character
题意
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
解题
使用dp[i][j]用来表示字符串1的0~i-1、字符串2的0~j-1的最小编辑距离;
我们可以知道边界情况:
dp[i][0] = i、dp[0][j]=j;
同时对于两个字符串的子串,都能分为最后一个字符相等或者不等的情况:
如果words[i-1] == words[j-1]:
dp[i][j] = dp[i-1][j-1];
也就是说当前的编辑距离和位置i和j的字符无关;
如果words[i-1] != words[j-1]:则存在三种可能的操作:
向word1插入:
dp[i][j] = dp[i][j-1] + 1;
从word1删除:
dp[i][j] = dp[i-1][j] + 1;
替换word1元素:
dp[i][j] = dp[i-1][j-1] + 1;
class Solution {
public:
int minDistance(string word1, string word2) {
int rows = word1.length();
int cols = word2.length();
vector<vector<int> > dp(rows+1, vector<int>(cols+1, 0));
for(int i=1; i<=rows; ++i)
dp[i][0] = i;
for(int j=1; j<=cols; ++j)
dp[0][j] = j;
for(int i=1; i<=rows; ++i){
for(int j=1; j<=cols; ++j){
if(word1[i-1] == word2[j-1])
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1;
}
}
return dp[rows][cols];
}
};
上期推文: